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Abstract

The interaction between an advancing solidification front and a micron-size particle is an inherently multiscale heat and mass trans-
port problem. Transport at the micro-scale (i.e. the scale of the particle dimension) couples with intermolecular interactions and lubri-
cation forces in a thin layer of melt between the particle and the front to determine the overall dynamics of the interaction. A multiscale
model is developed to simulate such front–particle interactions. The solution to the lubrication equations in the melt layer is coupled to
the solution of the Navier–Stokes equations for the overall particle–front system. Techniques are developed for coupling the dynamics at
the two disparate scales at a common ‘‘matching plane”. All interfaces are represented and tracked using the level-set approach. A sharp-
interface technique is employed for solution of the governing equations in the resulting moving boundary problem. Validation of the
coupling strategy and results for the particle–front interaction phenomenon with the multiscale approach are presented.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Particle–solidification interactions are crucial in the
development of the final microstructure in metal-matrix
composites (MMCs). In MMCs, embedded particles (typi-
cally ceramics) are introduced in the metallic melt to serve
as reinforcements in the final solidified sample. Particle
sizes of interest are typically in the micron to millimeter
range and are commensurate with the length scales of typ-
ical dendritic/cellular crystalline morphologies. Under-
standing the particle–front interaction phenomenon is
important for effecting better control of the distribution
of particles in MMCs. As illustrated in Fig. 1, when a solid-
ification front approaches the particle to nanometer-scale
separations repulsive disjoining pressures in the intervening
melt film become large and cause the particle to move. The
motion of the particle draws melt into the gap resulting in a
fluid dynamic drag force acting on the particle that impedes
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its motion [1]. The balance between the drag force and the
disjoining pressure force determines the overall dynamics
of the particle, i.e. whether the particle will be pushed or
engulfed by the advancing front. In general, pushing of
the particle by the front is undesirable and may lead to
particle depletion/accumulation in specific regions of the
solidified material.

An overview of the different models for the drag and
intermolecular forces on the particle is given in Asthana
et al. [2,3]. Much of the work to date on particle–solidifica-
tion front interactions relies on simplified analytical expres-
sions for the drag and the repulsive intermolecular force
[4–15]. The intermolecular forces are typically modeled as
dispersive (van der Waals) interactions [16]. The most com-
mon form for the drag force was originally derived [14] for
a flat solidification front. However, a flat solidification
front can only be achieved in the restricted case of a direc-
tional solidification experiment when the thermal conduc-
tivity of the particle (kp) is the same as that of the
melt (kl). Shangguan et al. [7] modified the expressions
for the drag and the repulsive force to account for the
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Fig. 1. (a) Schematic of the overall system. (b) Schematic of the zoomed-in box in (a) illustrating the different mechanisms involved in the particle–
solidification front interaction. As the solidification front approaches the particle, the disjoining pressure (for the repulsive van der Waals interaction
between the surfaces) starts to push the particle. Fluid then flows in to replenish the gap which results in a drag force FD that opposes the intermolecular
force FI.
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non-planarity of the solidification front when the thermal
conductivity of the particle is different from the melt
[1,12]. A large portion of the theoretical research on
front–particle interactions has employed steady-state anal-
yses under the condition where the particle is being steadily
pushed by the front [5,7,8,10,14,17]. Dynamic models that
simulate the interaction and subsequent evolution of an ini-
tially stationary particle being approached by a front have
been developed in recent work [11,12,15]. However, in all
these papers (including previous papers by the present
authors [11–13]) semi-empirical models were used for the
interaction forces.

The present work seeks to remove all of the restrictions
placed in previous work by developing a dynamic, fully-
coupled particle–front interaction model that accounts
for non-planarity of the front and the multiscale nature
of the problem. In this first paper the computational tech-
nique for performing such coupled multiscale calculations
is developed. The novel aspect in this work is the use of a
sharp-interface, fixed grid methodology with levelsets for
interface representation. The computational domain is split
into regions where distinct physical phenomena at dispa-
rate length and time scales occur. Procedures are developed
to couple these phenomena at a matching plane. This
approach represents a departure from previous work
[11–13] and results in a generally applicable computational
methodology for coupling phenomena at different scales.
There is no need for semi-empirical force models in the
present framework. No restrictions on planarity of the
front are placed. The companion paper (hereinafter
referred to as Part II) will present results obtained for par-
ticle–solidification interactions using the model as well as
provide a thorough discussion of the physics involved. In
Part II it is shown that the technique presented herein
yields insights into the physics underlying the particle–
front interaction viewed as the evolution of the particle–
front dynamical system and removes the limitations inher-
ent in the previous quasi-static equilibrium viewpoint
[11–15].
2. Development of the multiscale model

2.1. Overall approach

The computational method used for the outer micro-
scale calculations was developed in Marella et al. [18]
and Yang et al. [19] for simulation of flows around mov-
ing boundaries. In this study, there are two moving
boundaries present in the domain. The solid–liquid phase
boundary (denoted by subscript s-l) advances under the
applied boundary conditions. The particle (denoted by
subscript p) moves under the influence of the interaction
forces with the phase front. All interfaces are represented
implicitly on the mesh using a standard level-set approach
[20–23] which is widely used to represent and track inter-
faces [24,25]. The level-set method advects a scalar field /
in addition to the flow variables. The value of / at any
point is its signed normal distance from the interface with
/ < 0 inside the immersed boundaries and / > 0 outside.
The interface location is implicitly embedded in the /-field
since / = 0 contours represent the immersed boundary. In
this work the notation /að~X b; tÞ will be used. Subscript
‘‘a” indicates the level-set corresponding to the interface
a (=p/s-l) located at the point ‘‘b”. The t denotes time
and ~X b indicates the position vector of point ‘‘b”. The
geometry is communicated to the flow solver solely
through the distance function field. The sharp-interface
embedded boundary treatment uses an appropriate modi-
fication of the stencil for the mesh points adjoining the
boundaries. This does not smear discontinuities at the
interface and does not require forcing terms to transmit
boundary effects to the fluid. The discretization depends
essentially on convolving the differential operators with
the distance function field inherent in the level-set repre-
sentation of the interfaces. The result is an easily imple-
mented algorithm where the discretization of the
governing equations at all points (i.e. away from as well
as adjoining the interface) can be presented in a unified
format [18,19,26].
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A schematic of the configuration under study is shown
in Fig. 2. The overall computational domain is partitioned
into two regions corresponding to the two disparate scales
that are relevant to the problem. The two scales of concern
are termed ‘‘inner” (melt gap) and ‘‘outer” (front–particle
system) scales. In the outer (micro-) scale the Navier–
Stokes equations are solved. However, solving the
Navier–Stokes equations in the thin gap between the solid-
ification front and the particle would require an impossibly
fine mesh. Therefore an embedded inner model is devel-
oped by solving a lubrication equation in the gap
(Fig. 2b). The solution from the lubrication equation is
then coupled with the outer Navier–Stokes solution at a
‘‘matching plane” (see Fig. 2b). This coupling between
the two scales is maintained throughout the process of
front approach to the particle and the subsequent dynamics
leading to particle pushing or engulfment by the front. In
the following sections, the equations for the outer and
the inner regions and the method for matching the solu-
tions are described.
2.2. The governing equations in the ‘‘outer region’’

The outer region is defined by removing the thin melt
gap region from the overall computational domain shown
in Fig. 2. The outer variables are non-dimensionalized as
follows:

T � ¼ T � T m

T c

; x� ¼ x
Rp

; y� ¼ y
Rp

; p�outer ¼
p

pCouter

;

u� ¼ u
U c

; v� ¼ v
U c

; t� ¼ t
tc

Here T is temperature, x and y are the outer coordinates, p

is the pressure, t is time, and u and v are the x- and y-fluid
velocities, respectively. The ‘‘*” superscripts denote the
non-dimensional variables and the ‘‘c” subscripts denote
the characteristic scales. The characteristic scales are de-
fined as follows: U c ¼ al=Rp, T c ¼ GLRp, tc ¼ Rp=U c, and
pCouter ¼ qU 2

c . The characteristic pressure is denoted as
pCouter to distinguish it from the inner characteristic pres-
sure scale (pCinner), which will be defined later in the text.
Fig. 2. (a) Schematic of a solidification front moving towards and interactin
interacting with the particle. The rectangular grid in (b) represents the mesh.
The Tm and the Rp denote the melting temperature of the
melt and the particle radius, respectively. The q and al de-
note the density and thermal diffusivity of the melt, respec-
tively, and GL is the temperature gradient imposed in the
liquid during the simulations.

The non-dimensional governing equations are:

Continuity:

ou�

ox�
þ ov�

oy�
¼ 0 ð1aÞ

x-momentum:

ou�

ot�
þ u�

ou�

ox�
þ v�

ou�

oy�

¼ � 1

q
op�outer

ox�
þ 1

Re
o

2u�

ox�2
þ o

2u�

oy�2

� �
ð1bÞ

y-momentum:

ov�

ot�
þ u�

ov�

ox�
þ v�

ov�

oy�

¼ � 1

q
op�outer

oy�
þ 1

Re
o

2v�

ox�2
þ o

2v�

oy�2

� �
ð1cÞ

Energy:

oT �

ot�
þ u�

oT �

ox�
þ v�

oT �

oy�
¼ a�s=l=p

o2T �

ox�2
þ o2T �

oy�2

� �
ð1dÞ

where Re ¼ qU cRp

l is the Reynolds number, l denotes the dy-
namic viscosity of the liquid, and a�s=l=p ¼

as=l=p

al
is the non-

dimensional thermal diffusivity of the solid/liquid/particle
phase, respectively.

The no-slip and no-penetration boundary conditions are
applied at the particle surface, i.e.:

~v�ð~X �p; t�Þ ¼~v�p ð2Þ

where ~v�ð~X �p; t�Þ is the fluid velocity vector at time t* and
position ~X �p (position vector at the particle surface), and
~v�p is the particle velocity. Ignoring shrinkage effects upon
solidification, the velocity boundary condition at the phase
boundary (solidification front) is:

~v�ð~X �s-l; t
�Þ ¼~v�s-l ¼ 0 ð3Þ
g with a particle. (b) A zoomed in view of the solidification front in (a)
The bold line on the right denotes the ‘‘matching plane”.
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The solidification front velocity is computed from the
Stefan condition:

s�s-l ¼ Ste
ks

kl

� �
oT �

on�

� �
s

� oT �

on�

� �
l

� �
ð4Þ

where s�s-l is the non-dimensional interface speed in the
direction normal to the interface, ks is the thermal conduc-
tivity of the solid and Ste ¼ klGL=ðqH slU cÞ is the Stefan
number. Hsl is the latent heat of fusion per unit mass of
the melt. Note that v�s-l is fluid velocity at the solidification
front whereas s�s-l is the speed at which the solidification
front is traveling.

The solidification front temperature is assumed to be at
the melting temperature (i.e. T s-l ¼ T m) or depressed due to
premelting effects [8,13,27] and is given by:

T �s-l ¼ �
k

dcd
�

� �3 T m

GLRp

� �
ð5Þ

In the above the non-dimensional gap thickness between
the solidification front and the particle is given by d*.
The characteristic value of the gap thickness is given by
dc (=0.15Rp). The variable, k, is a length-scale correspond-
ing to molecular interactions whose value is typically
around 10�10 m [8]. For sufficiently large values of gap
thickness the interface temperature is essentially the equi-
librium melting temperature, while a depression of melting
temperature results as the front approaches the particle and
a premelted layer of melt is formed between the two sur-
faces [27]. In the current work curvature effects on interfa-
cial temperature (through the Gibbs–Thompson condition)
are neglected. These effects, for the micron size particle
considered, are likely to have a significant effect, and can
be included fairly easily in the computations [19,28]. How-
ever, past theoretical work on particle–front interaction
has largely ignored this effect and this practice is followed
herein to isolate the effects of thermal transport and flow.
In ongoing work, the effect of interfacial temperature
change due to curvature is being studied.

At the interface between the particle and the melt heat
flux balance:

kp

kl

� �
oT �

on�

� �
p

¼ oT �

on�

� �
l

ð6Þ

The normal gradients of temperature in Eqs. (4) and (6) are
computed using the normal probe technique described in
previous work [19].

2.3. Modeling the ‘‘inner region’’ using lubrication theory

2.3.1. Equations for the ‘‘inner region’’

The inner region is defined by the melt gap between the
front and the particle that is excised from the overall com-
putational domain. In this region, viscous and repulsive
intermolecular forces dominate and a lubrication layer
assumption is applied. To include the repulsive intermolec-
ular interactions, a model for disjoining pressure in the thin
film is included in the lubrication model [16,29]. A typical
form of the disjoining pressure (P) is given by:

P ¼ A

6pd3
ð7Þ

where A is the Hamaker constant (which is typically of the
order of ±10�19 J) and d is the gap thickness between the
two surfaces (in the present case, the particle and solidifica-
tion front).

To develop the inner lubrication model the governing
equations are transformed into local curvilinear (n,g) coor-
dinates as illustrated in Fig. 2. The resulting transformed
equations are as follows [30]. The continuity equation is:

oU
on
þ oV

og
¼ 0 ð8Þ

where:

U ¼ uyg � vxg ð9Þ
V ¼ vxn � uyn ð10Þ

The momentum equations are:
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ð11Þ
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ð12Þ

The energy equation is:

oðJcpqT Þ
ot

þ oðqcpUT Þ
on

þ oðqcpVT Þ
og

¼ o

on
kl

J
q1

oT
on
� q2

oT
og
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þ o

og
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J
q3

oT
og
� q2

oT
on
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ð13Þ

J is the standard Jacobian of the metric tensor and q1; q2; q3

are metrics of the transformation [31]. The n and g sub-
scripts denote differentiation with respect to that indepen-
dent variable. cp is the specific heat of the melt.

To develop the lubrication equations the thin layer
assumption for the melt gap is made, i.e. the gap thickness
maxðdðnÞÞ � Rp (the outer length scale). The inner vari-
ables are then non-dimensionalized with respect to the
scales applicable in the lubrication layer as follows:
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T � ¼ T
T c

; J � ¼ J
J c

; x� ¼ x
Rp

; y� ¼ y
Rp

; q�1 ¼
q1

q1c

;

q�3 ¼
q3

q3c

; p�inner ¼
p

pCinner

; P� ¼ P
pCinner

; n� ¼ n
Rp

;

g� ¼ g
dc

; U � ¼ U
U c

; u� ¼ u
U c

; v� ¼ v
V c

; t� ¼ t
tc

where the ‘‘*” superscripts denote the non-dimensional
variables and the ‘‘c” subscripts denote the characteristic
scales. The characteristic inner pressure is given by:
pCinner ¼ R2

plU c=ðd3
cÞ.

The continuity equation (Eq. (8)) gives a relation
between the two characteristic velocities, Uc and Vc:

V c ¼
dc

Rp

� �
U c ð14Þ

Combining Eqs. (8)–(13), and applying the lubrication
layer assumption leads to:

oU �

on�
þ oV �

og�
¼ 0 ð15Þ

� ðJ �OÞ
3

J �NOq�3

 !
op�inner

on�
þ oP�

on�

� �
þ o2U �

og�2
¼ 0 ð16Þ

op�inner

og�
þ oP�

og�

� �
¼ 0 ð17Þ

o2T �

og�2
¼ 0 ð18Þ

where:

J �NO ¼ x�ny�g � x�gy�n ð19Þ

and

J �O ¼
ffiffiffiffiffiffiffiffiffi
q�1q�3

p
ð20Þ

From Eq. (17), as expected in the lubrication approxima-
tion the pressure and the disjoining pressure are functions
of n only. This allows one to integrate Eq. (16) to obtain:

U � ¼ 1

2

ðJ �Þ3

J �NOq�3

 !
op�inner

on�
þ oP�

on�

� �" #
g�2 þ C1g

� þ C2 ð21Þ

The boundary conditions at the solid–liquid interface and
the particle surface are:

U �ðg� ¼ 0Þ ¼ U �s-l; V �ðg� ¼ 0Þ ¼ V �s-l ð22aÞ
U �ðg� ¼ d�Þ ¼ U �p; V �ðg� ¼ d�Þ ¼ V �p ð22bÞ

where d * is the non-dimensional gap thickness, which is a
function of n*. The U �p, U �s-l, V �p, and V �s-l are the velocity
components for the particle (subscript p and solidification
front (subscript s-l) found from Eqs. (9) and (10) and are
defined as:

U �p ¼ u�pyg � v�pxg; U �s-l ¼ 0 ð23aÞ
V �p ¼ v�pxn � u�pyn; V �s-l ¼ 0 ð23bÞ

Applying the boundary conditions given in Eqs. (22) to
(21) yields:
U � ¼ 1

2

ðJ �Þ3

J �NOq�3

 !
op�inner

on�
þ oP�

on�

� �" #
g�2 � d�g�
	 


þ
U �p � U �s-l

d�

� �
g� ð24Þ

Substituting U* from Eq. (24) into Eq. (15) and integrating
across the gap gives:Z d�

0

oU �

on�
dg� þ V �p � V �s-l ¼ 0 ð25Þ

Substituting Eq. (24) into Eq. (25) yields the equation for
pressure in the gap:

� ðJ �Þ3

J �NOq�3

 !
o2p�inner

on�2
þ o2P�

on�2

� �
d�3

12
þ op�inner

on�
þ oP�

on�

� �
od�

on�
d�2

4

� �� �

þ 1

2
d�

o U �p�U �s-l

� �
on�

þ ðU �p �U �s-lÞd�2
o

on�
1

d�

� �0
@

1
A

þ V �p � V �s-l ¼ 0 ð26Þ

It is easily checked that this equation reduces to the stan-
dard Reynolds’ equation in lubrication theory [29,32] for
a Cartesian coordinate system. Eq. (26) is solved for the
pressure in the gap (p�inner) between the particle and the
solidification front. Note, as suggested by Eq. (23), that
the fluid velocity at the solidification front is zero (i.e.
V �s-l ¼ U �s-l ¼ 0) unless one includes shrinkage effects. In this
paper it is assumed that there is no shrinkage-induced flow.
In most situations the particle velocity in the n*-direction
can also be considered negligible, however it is retained
in Eq. (26) for the sake of generality.
2.3.2. Discretization and mesh-refinement for the

‘‘inner region’’

2.3.2.1. Defining the inner region. Since a lubrication layer
assumption is made for the melt gap, its geometry is
defined by means of a gap thickness distribution dðnÞ where
n is the curvilinear coordinate along the solid–liquid inter-
face, as shown in Fig. 2b. The procedure for finding dðn)
begins by spanning over the grid points that lie immedi-
ately within the particle surface (see [18,19] for details on
identification of such ‘‘interfacial” points), as shown in
Fig. 3. At each of these points (subscripted cp) the corre-
sponding location on the particle surface can be found via:

X p ¼ X cp � /pnxcp ð27Þ
Y p ¼ Y cp � /pnycp

ð28Þ

where Xp and Yp are the x- and y-locations, respectively, on
the particle surface (or in vector form, ~X p). The nxcp and nycp

are the x- and y-components of the normal (defined as po-
sitive pointing away from the particle surface). The /p, as
defined in Section 2.1, is the distance function value for
the particle at the points denoted as cp.

For each point on the particle surface denoted by the
subscript p above, the corresponding location of a point



Fig. 3. Illustration of the method for finding the d-distribution. The ‘‘i”
subscripts indicate the mesh index number.
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along the normal (of the solidification front) and lying on
the solidification front is:

X s-l ¼ X p � /s-lnxp ð29Þ
Y s-l ¼ Y p � /s-lnyp

ð30Þ

where X s-l and Y s-l are the coordinates on the solidification
front. The nxp and nyp

are the respective x- and y-compo-
nents of the normal of the solidification front obtained at
the particle surface (i.e. at Xp and Yp), and the /s-l is the
distance function value for the solidification front at the
particle surface.

The procedure above identifies a set of N points on the
particle surface (subscripted p) and their corresponding
partner points s-l on the solid–liquid interface. To form a
grid in the inner region these points need to be sequenced
to lie along the n-coordinate with the first point (i.e. point
i = 1) located on the west symmetry line (i.e. the point
where the gap thickness is at a minimum). Generalizing this
sequencing procedure for non-symmetric cases requires a
more complicated algorithm and is the subject of ongoing
work. Thus, the grid spacing Dn in the discretization of
the inner region is defined as the distance between each
of the sequenced solidification front location points, i.e:

Dni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX s-l;i � X s-l;iþ1Þ2 þ ðY s-l;i � Y s-l;iþ1Þ2

q
ð31Þ

where the subscripts ‘‘i” and ‘‘i + 1” indicate the inner mesh
indices. The thickness of the gap di at a given point in the
inner mesh is then obtained for all i from 1 to N as the value
/s-lð~X p; tÞ, i.e. the distance function value corresponding to
the solidification front at the particle location.
2.3.2.2. Refinement of the inner region and convergence

criterion for accurate solution of the lubrication equation.

The inner lubrication equation is rather stiff due to the
dependency of the disjoining pressure forces on d�3. For
small values of d steep variations of hydrodynamic and dis-
joining pressures are expected in the lubrication layer. The
initial d*-distribution and the inner mesh that is found from
the level-set field is too coarse to accurately solve for the
pressure in the gap using Eq. (26). Therefore the initial
mesh for the ‘‘inner region” needs to be refined such that
the mesh spacing (Dn) is commensurate with the gap thick-
ness (d). To determine how much to refine the inner mesh, a
refinement parameter, Rf, is introduced and will be used as
a scale factor for the mesh spacing. The Rf is defined as:

Rf ¼
RpDx�

dcd
�
min

ð32Þ

where Dx� is the grid size in the outer domain and d�min is
the minimum (non-dimensional) gap thickness. Since the
inner mesh spacing is initially of the order of the outer
mesh spacing, the refined inner mesh spacing is obtained
as:

Dn�Rf
¼ Dn�

Rf

ð33Þ

where Dn�Rf
is the new, refined grid size in the inner region.

The inner mesh is then ‘‘re-meshed” using the new inner
mesh spacing. The values of the input variables in the
embedded lubrication model (i.e. U �s-l; V �s-l; d�; etc:) at the
new ‘refined’ grid points are then linearly interpolated from
what was obtained initially at the initial (pre-refined) Dn�

grid points.
This refinement method aids in the convergence and

accuracy of the solution of Eq. (26). A standard Gauss–Sei-
del iteration was used to solve Eq. (26). Various conver-
gence criteria were examined for this solution method
and the one found to work best was:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkmax

i ðp�minner � p�m�1
inner Þ

2
q

Pkmax

i
p�m

inner

kmax

6 ecrit ð34Þ

where kmax is the total number of grid points, the index m

denotes the solution iteration number, the index i denotes a
particular grid point, and ecrit is the convergence criterion.
It was found that a ecrit of 10�3 was sufficient for all calcu-
lations performed.
2.4. Coupling between the inner and outer regions

at the matching plane

The edge of the inner region, i.e. where it connects to the
outer region is the ‘‘matching plane”. This edge is chosen
so that the thickness of the gap at that location is still small
enough that the lubrication assumption holds in the inner
region but large enough that the outer mesh sufficiently
resolves the flow in the outer region. During the course
of the approach of the front to the particle this matching
plane can change its location (i.e. along the n-direction)
as well as width (i.e. along the g-direction). The ‘‘matching
plane” location that is used in the current simulations cor-
responds to a d=Rp of 0.2, i.e. the gap thickness at that
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location is comparable to the particle radius. The flowfields
in the inner and outer regions need to be matched, i.e.
information needs to be passed between the inner and outer
regions so that the pressure and velocity fields are consis-
tent at the boundary separating the two regions.

2.4.1. Boundary conditions for the ‘‘inner region’’

at the ‘‘matching plane’’

The flow-fields in the inner and outer regions need to be
matched at the matching plane as shown in Fig. 2. Since
the equation in the inner region is a lubrication equation
(where pressure is the independent variable to be solved),
pressure boundary conditions are needed from the outer
region. At the matching plane, the averaged outer region
pressure values are supplied as the boundary conditions
for the inner region pressure equation, Eq. (26). Note that
since the pressure of the outer flow has a different scale
than that of the inner flow, the pressure that is applied at
the inner region must be expressed in the scale of the inner
flow. Hence the dimensionless outer pressure must be mul-
tiplied by the scaling factor, Zf ¼ pCouter=pCinner, in order to
be used as the boundary condition for Eq. (26). The dis-
joining pressure is not included in the boundary condition
as it is negligible at the matching plane.

2.4.2. Boundary conditions for the ‘‘outer region’’

at the ‘‘matching plane’’

When the particle is in motion, there is a net mass flux of
melt that is required to enter or leave the lubrication layer
to replenish the melt in the inner region. Viewed from the
outer region, the matching plane behaves as an outflow
boundary. This outflow boundary is embedded inside the
overall computational domain as opposed to residing at
its edges. Nevertheless, standard outflow boundary condi-
tions are applied at the matching plane while solving for
the outer flow.

The matching between the flow in the inner region and
that in the outer region is effected through the fact that
the volume flux to be supplied at the matching plane is
given by the rate of change of volume of the lubrication
layer i.e.:

Q� ¼ V c

U c

� �Z n�max

0

ðv�p � v�s-lÞdn� ð35Þ

Assuming a parabolic velocity profile at the matching plane
(i.e. the inlet to the inner region and outlet to the outer re-
gion) the outflow velocity profile for the outer region at the
matching flow is given by:

U �match ¼ aU

dc

Rp

g�
� �2

þ bU

dc

Rp

g�
� �

þ cU ð36Þ

where U �match is the fluid velocity in the n*-direction located
at the matching plane, and aU, bU, and cU are determined
from boundary conditions. The dc

Rp

� �
factor ensures that the

‘‘outer” scaling is used.
The following boundary conditions apply to this para-
bolic profile:

U �matchðg� ¼ 0Þ ¼ U �s-l ¼ 0 ð37Þ

U �matchðg� ¼ d�Þ ¼ U �p ð38Þ

The expression for the outflow velocity then is:

U �match ¼ aU
dc

Rp

g�
� �2

þ
ðU �p � U �s-lÞ � aU

dc

Rp
d�

� �2

dc

Rp
d�

� �
0
B@

1
CA dc

Rp

g�
� �

þ U �s-l ð39Þ

The constant aU is obtained by matching the volume flux,
Eq. (39), to that produced by the above parabolic inflow at
the matching plane:

dc

Rp

� �Z d�

0

U �match dg� ¼ Q� ð40Þ

Substituting Eq. (39) into Eq. (40) and integrating results in
an equation for the constant, aU:

aU ¼
6 Q� þ U �s-l

dc

Rp
d�

� �� �
dc

Rp
d�

� �3
þ

3ðU �p � U �s-lÞ
dc

Rp
d�

� �2
ð41Þ

Substituting Eqs. (35) and (41) into Eq. (39) leads to a solu-
tion for U �match that is used for the boundary condition for
the outer flow.

A pressure boundary condition for the ‘‘outer domain”
is now required. To conform with the outflow boundary
treatment for the matching plane a zero normal pressure
gradient is applied for the outer flow. The normal to the
matching plane is easily obtained using the level-set field
in that region.
2.5. Temperature of the interfaces in the gap

The temperature of the solidification front is given by
Eq. (5). To find the particle surface temperature heat flux
balance (Eq. (6)) is applied at the particle–liquid interface.

The gradients in Eq. (6) are evaluated using a normal
probe technique [28]. When the particle and front are far
apart there are sufficient points available in the liquid and
particle interior to use two probe points on the normal
probe to extract gradients [28]. However, when the particle
is approached by the front it is not possible to use the probe
technique to estimate gradients in the liquid melt since the
layer of melt between the particle and front can be very thin
(i.e. below the resolution afforded by the mesh). To allow
for this situation, only one point is used on the normal
probe. Then the above gradients are discretized as:

kp

T �ps � T �p
Dn�

� �
¼ kl

T �p � T �s-l

dc

Rp
d�

 !
ð42Þ
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where Dn� is a probe that is placed normal to the particle
surface and the temperature value at the end of the probe
is interpolated from the surrounding mesh points. The
T �ps is the temperature at the probe located inside the parti-
cle and the T �p is the temperature at the particle surface.
Notice that the gap thickness is rescaled using the outer
scale, Rp, this ensures the length-scales on each side of
the equation are commensurate with each other.

Thus, when the front approaches the particle close
enough that the lubrication model for the melt layer holds,
the particle temperature can be found from:

T �p ¼
T �s-l þ

kp

kl

dc

Rp
d�

Dn�

 !
T �ps

1þ kp

kl

dc

Rp
d�

Dn�

 ! ð43Þ
2.6. Computing solidification front velocity

The procedure to find the solidification front velocity in
the outer region has been presented in previous papers [28].
A normal probe technique is used to compute the temper-
ature gradients in the Stefan condition (Eq. (4)). In the
inner region, computation of the temperature gradient in
the liquid phase using the normal probe technique is not
possible due to lack of sufficient mesh points across the
gap. The method for calculating the temperature gradient
in the liquid in the inner region is as follows:

From Eq. (18), the temperature in the gap assumes a lin-
ear profile. The boundary conditions are:

T �ðg� ¼ 0Þ ¼ T �s-l ð44Þ
T �ðg� ¼ d�Þ ¼ T �p ð45Þ

Using these boundary conditions in Eq. (18) leads to a
solution for the temperature equation in the gap:

T � ¼
T �p � T �s-l

d�

� �
g� þ T �s-l ð46Þ

Taking the derivative of Eq. (46) with respect to dc

Rp
g� (the

scaling factor ensures an ‘‘outer scale”) leads to:

Rp

dc

oT �

og�
¼

T �p � T �s-l

dc

Rp
d�

 !
¼ oT �

on�

� �
l

ð47Þ

This provides the temperature gradient in the gap (liquid)
that can be used in the Stefan condition (Eq. (4)) when
finding the interface velocity. The temperature gradient in
the solid, oT �

on�

	 

s
, can be obtained by simply using the probe

technique as in the outer domain calculation [19].
The linear temperature profile given in Eq. (18) suggests

that all that is needed in order to obtain the solidification
velocity from the Stefan condition (Eq. (4)) are the surface
temperatures of the particle and the solidification front.
The temperature field at the gap and matching plane is
obtained from Eq. (18) as well.
2.7. Computing particle motion

Previous steady-state as well as dynamic analyses of par-
ticle–front interactions have employed analytical/empirical
models for the forces experienced by the particle [4,5,7,9–
12,14,15,33–35]. In the present work, the force acting on
the particle is computed directly from the fluid mechanics
in the inner and outer regions. Thus, once the pressure in
the embedded lubrication model and the flow solution in
the outer domain are obtained, the forces acting on the
particle can be obtained as follows:X

~F ¼ ~F inner þ~F outer ð48Þ

where

~F inner ¼ �ðRppCinnerÞ
Z

A
p�inner~ndS�inner ð49Þ

and

~F outer ¼ �ðRppCouterÞ
Z

A
p�outer~n dS�outer ð50Þ

where ~F inner and ~F outer are the (dimensional) forces in the in-
ner and outer regions, respectively. The and dS�outer denotes
the non-dimensional surfaces in the inner region and the
outer region, respectively. The contribution to the forces
from the shear component is assumed to be negligible com-
pared to the large lubrication pressure force, and hence it is
ignored in the calculation of the forces.

Once the forces are obtained, they can then be used to
calculate the motion of the particle:

d~v�p
dt�
¼ tc

U cmp

ð~F inner þ~F outerÞ ð51Þ

The vector,~n, in Eqs. (49) and (50) is the normal to the par-
ticle surface in global x- and y-coordinates. Hence, the
velocity vector in Eq. (51) is also in the global x- and y-
coordinate system. The reason behind using the global
coordinates is because the level-set advection of the inter-
faces requires the global coordinates. The velocities are
transformed back in to n- and g-coordinates using Eqs.
(9) and (10) whenever Eq. (26) is solved.

The gap thickness is then evolved according to:

dd�

dt�
¼ V ctc

dc

ðV �p � s�s-lÞ ð52Þ

where s�s-l is the solidification velocity (as obtained by the
Stefan condition, Eq. (4)) and V �p is the particle velocity
in the g* direction (both of which are in the normal direc-
tion of the solidification front). Note that all variables in
Eq. (52) are functions of n*.

2.8. Time-stepping of the inner and outer equations

An important issue that needs to be addressed in the
coupling of the inner and outer solutions is the disparity
in the physical time scales and hence the numerical time
step choice. The time-step size of the outer region solu-
tion, including level-set advection, is determined by the



Fig. 4. Flowchart of the overall solution procedure.
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solidification front velocity and the outer mesh size [18].
Since the inner region length scale (i.e. melt gap thickness)
is typically very small, advecting the level-set at the outer
time step size could cause the solidification front to collide
with the particle. To circumvent this, once the solidification
front approaches the particle to small separations, the
outer time step size, Dtouter, is restricted such that:

Dtouter ¼ min S

dc

Rp
d�

� �
ðV �p � s�s-lÞ


; CFL

Dx�

maxðjV �pj; js�s-ljÞ

0
@

1
A
ð53Þ

The first argument in the brackets on the right hand side
sets the time-step such that the solidification front will
not collide with the particle, with S acting as a safety fac-
tor. The second argument in the brackets is the typical
CFL-type condition where Dx� is the outer grid size and
CFL is the interface Courant–Friedrichs–Lewy constant.

To obtain stable results from the embedded lubrication
model (i.e. Eqs. (26) and (48)–(52)), one has to choose time-
steps commensurate with the inner time-scale. To ensure
full coupling in time between the inner and outer region,
solving the outer region equations at the inner time-scale
would be ideal but is impractical because this would require
an impossible number of time-steps to see any significant
changes in the outer solution. To remedy this situation,
the embedded lubrication model is advanced in time using
an inner time-step size different from the outer region time
step. To match solutions in time however the inner region
equations are solved for a period of time equal to that of
the micro time-step used for the outer domain solution.
The inner and outer time-step sizes are related by:

Dtinner ¼
Dtouter

s
ð54Þ

where Dtinner is the inner lubrication model time step, Dtouter

is the outer model time step. The parameter, s, has to be de-
fined such that Dtinner becomes commensurate with the inner
time scale and keeps the solution of the inner model stable.
Typical minimum gap thicknesses (dmin) are of the order of
nanometers (10�9 m) and the outer lengthscale (Rp) is of the
order of micrometers (10�6 m). Therefore s ¼ Dtouter

Dtinner
is of the

order of 1000 since Dtouter ¼ Rp

U c
and Dtinner ¼ dmin

U c
. In the pres-

ent calculation, s was set to 5000. The inner lubrication
model is then evolved with this inner time step until the time
elapsed in the inner model is equal to that of the outer time
step. An illustration of the manner in which the inner and
outer models are coupled is outlined in Fig. 4.
3. Results

3.1. Validation of the embedded lubrication model

The above methodology for coupling the outer and
inner scales involves the following major computational
aspects:
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1. Accurate tracking of solid–liquid front evolution in the
presence of diffusional heat transport.

2. Computation of fluid flow in the presence of moving
solid boundaries (i.e. the particle and the phase
boundary).

3. Solution of the lubrication equations and the computa-
tion of forces on the particle (outer region) due to the
flow in the lubrication film (inner region).

4. Coupling of the flow and heat transfer in the outer
region with that in the inner region.

The first two aspects have been thoroughly validated in
previous work [18,19]. The third aspect, i.e. the solution
of the lubrication layer equations in the presence of moving
boundaries can be validated for the case of a cylinder mov-
ing with a velocity of~vp ¼ �vpĵ (where ĵ is the unit vector
in the y-direction) downwards towards a stationary flat
plate, as shown in Fig. 5. Note that this is strictly a valida-
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Fig. 5. (a) Pressure distribution in the gap for a 1 lm particle approaching a pla
force as a function of dmin=Rp obtained from one simulation of a particle appro
directly above the actual data line.
tion of the fluid flow calculation in the gap and for the
computation of the coupling of the inner and outer flow
solutions; the temperature field and solidification front
evolution are not involved in this case.

For the case of a cylinder moving toward a flat plate at
constant speed vp (Fig. 5a) and for low Reynolds numbers,
an analytic expression for the pressure profile underneath
the particle is given by Leal [32] as:

P ðnÞ ¼ �6lRpvp

1

dmin þ n2

2Rp

� �� �2
� 1

dmin þ n2
max

2Rp

� �� �2

2
64

3
75
ð55Þ

where P ðnÞ is the pressure field in the lubrication layer be-
tween the particle and the plate, nmax is the distance from
the symmetry line (n = 0) to the edge of the lubrication layer.
In the present paper this corresponds to the matching plane
x/Rp

 vs. dmin/Rp

9

0.015 0.020 0.025 0.030

dmin/Rp

Present
Analytic
Power (Present)

ne wall at 500 l/s at dmin=Rp ¼ 0:02 (no disjoining effects included). (b) The
aching a flat wall. The bold line represents a power law fit curve which lies



Fig. 6. Initial system setup.
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identified in Section 2.4. dmin is the minimum gap thickness,
i.e. the gap thickness at the symmetry line below the particle.

Computation of the flow in the inner and outer regions
was performed for the configuration described above.
Comparison of the numerical results with the analytical
solution is shown in Fig. 5a and b. The pressure profile
given by Eq. (55) is plotted in Fig. 5 for a dmin=Rp ¼
0:020, Rp ¼ 1 lm, vp ¼ 500 l=s. With a viscosity of
0.003 Pa s the Reynolds number is 4� 10�4. The pressure
profile obtained by solving a lubrication equation (Eq.
(26)) in the inner region is also plotted in Fig. 5. As seen
in Fig. 5, the calculated profile from the pressure Poisson
equation (Eq. (26)) is in good agreement (to within a few
percent) with the analytic expression obtained by Leal [32].

The total force on the particle during its steady-state
motion towards the plate is [32]:

F D;ANAL ¼ �3
ffiffiffi
2
p

plvp

Rp

dmin

� �1:5

ð56Þ

The force on the particle computed from the coupled inner/
outer flow solution is plotted along with the analytic result
in Fig. 5b. Notice that the curve fit to the computed force
data yields:

F D ¼ �3:61plvp

Rp

dmin

� �1:49

ð57Þ

The computed force expression reproduces the correct
power-law exponent and the overall trend with varying
dmin=Rp (to within a few percent) when compared with
the analytical result of Leal. The observed difference be-
tween the analytical and numerical curves is attributed to
the fact that the gap thickness variation along n is obtained
from the (outer) level-set field which contains errors due to
interpolation and estimations of the distance function. The
difference over the entire range of d=Rp, however, is small
and the method is considered to be validated.
3.2. Simulation of solidification front–particle interactions

To perform numerical experiments under controlled
conditions, a directional solidification process (with the
solidification boundary moving up) is simulated. This con-
figuration (Fig. 6) corresponds to that used in previous
experimental [33,36] as well as theoretical [9,11–13,33]
work on particle–front interactions. In the numerical
model to simulate directional solidification, because the
overall domain is stationary, the heater is translated rather
than the sample. To simulate this condition, temperature
boundary conditions at the top and bottom of the domain
are varied in time to reflect this motion of the heaters. At
the top of the domain the liquid is given a temperature:

T L ¼ T LO � GLvst ð58Þ

where T LO is the initial temperature of the top boundary,
GL is the temperature gradient in the liquid, and vs is the
pull velocity (i.e. imposed solidification velocity) of the
sample in directional solidification.

At the bottom of the domain, i.e. on the solid side, the
boundary condition is:

T S ¼ T SO � GSvst ð59Þ

where TSO is the initial temperature of the bottom bound-
ary and GS is the imposed temperature gradient in the
solid. Non-dimensionalizing using the outer scales, Eqs.
(58) and (59) become, respectively:

T �L ¼ T �LO � PeLt� ð60Þ
T �S ¼ T �SO � PeSt� ð61Þ

where PeL ¼ vsRp=al and PeS ¼ ðGS=GLÞðvsRp=alÞ denote
the liquid and solid Peclet number, respectively. The fluid
velocities at the top and bottom faces of the computation
domain are set to zero. Symmetry boundary conditions
are applied on all variables at the left and right boundaries.

The particle is initially placed in the center of the com-
putational domain and the solidification boundary is
placed some distance below it, as shown in Fig. 6. To
obtain suitable initial conditions, the system is first brought
to steady-state by solving the heat conduction equation for
an extended time before the phase boundary is allowed to
move. After the steady-state temperature values are
reached, the phase boundary is allowed to move towards
the particle. Once the ratio of the minimum gap thickness
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(dmin) to Rp reached a value of 0.15, the lubrication model
is activated and the subsequent interaction is simulated
using the coupled multiscale model.

A grid convergence study is first performed in order to
choose an adequate grid size for the computations. Pre-
melting effects on the interface temperature are not
included in this case (i.e. k = 0), the particle radius is
1 lm, and the solidification front velocity is 100 lm/s.
The ratio of thermal conductivities kp=kl ¼ 1. The values
of other parameters used in these simulations correspond
to typical MMCs [7,33,36] and are given in Table 1. Three
grid sizes were employed in the calculations in the region
occupied by the front and particle through the interaction.
Table 1
Values of the constants/material properties used in calculations (the values
for the material properties were adopted from [9])

Constant/material
properties

Definition Value used in
present calculations

l Dynamic viscosity of
melt

0.003 Pa s

q Density of melt 2365 kg/m3

Rp Particle radius 10�6 m
GL Temperature gradient in

the melt
104 K

A Hamaker constant �8:0� 10�19 J
k Interaction length used

in premelting expression
2:0� 10�10 m

kl Thermal conductivity of
the melt

100 W/mK

ks Thermal conductivity of
the solid

100 W/mK

kp Thermal conductivity of
the particle

1–100 W/mK

al Thermal diffusivity of
the melt

5:15� 10�5 m2=s

Tm Bulk melting
temperature of the melt

933 K

Hsl Latent heat of fusion per
unit mass

399,000 J/kg

Fig. 7. Grid convergence study (Dx ¼ Dy ¼ 0:025; 0:0325; and 0:04) in the y 2
velocity vs. time at the culmination of the interaction when a ‘‘steady” pushin
These are, respectively, (Dx ¼ Dy ¼ 0:025; 0:0325; and
0:04) in the region of 3:0 6 y 6 7:0. The interaction
between the front and the particle in this case results in
steady pushing of the particle ahead of the front. Fig. 7
shows that the overall interaction is captured well on these
grids with convergence of the particle velocity with increas-
ing grid density. This is shown clearly in Fig. 7b with a
magnified view of the final velocities assumed by the
front–particle system.

Based on the above grid independence study, the grid
size used in the simulations is a 202� 322 grid, with a
202� 160 grid points used in the region corresponding to
3:0 6 y 6 7:0, i.e. where the particle and front were placed
initially and where the subsequent interaction occured. The
simulation presented as an example in this paper illustrates
the various aspects of the calculation using the multiscale
model, i.e. the outer region flow (Fig. 8), the matching flow
between the outer and inner regions and the inner region
geometry evolution (Fig. 9), inner region pressure profile
(Fig. 10), and the overall evolution of the moving bound-
aries (Fig. 11). All conditions used are the same as for
the grid independence study presented above except that
the front velocity is increased to 500 lm/s.

3.2.1. Outer region
Fig. 8 illustrates the evolution of the temperature field,

the outer region pressure and the streamlines as the solidi-
fication front and particle interact. Fig. 8a–c show the tem-
perature fields for this case. The solidification front is
indicated by the bold line corresponding to a temperature
value of 933 K (which is the equilibrium melting tempera-
ture). Note that in this case the particle–front interaction
led to a steady pushing mode, i.e. after a period of interac-
tion, the particle was pushed steadily ahead of the front.
The front remained planar through the interaction, even
into the steady pushing regime. Fig. 8d–f show the
pressure field and streamlines in the outer region at instants
½3:0; 7:0� region. (a) Evolution of particle velocity with time. (b) Particle
g mode is reached in all three cases.



Fig. 8. Temperature contours (left) and the corresponding pressure contours and streamlines (right) of a system where the solidification velocity is 500 lm/s
with no premelting, kp=kl ¼ 1:0, and Rp ¼ 1 lm. The axes are non-dimensional and are scaled by Rp. (a–c) The isotherms and interface location at three
different (increasing) times. (d–f) The pressure field corresponding to the time instants in (a–c).
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corresponding to Fig. 8a–c. Note that in each of these fig-
ures the pressure contours terminate at a certain point (i.e.
at the matching plane) in the gap between the particle and
the front. Since a steady pushing mode results from the
interaction, the fluid flow from the outer region (Fig. 8f)
is established to replenish the melt in the inner region as
the front solidifies. To the left of the matching plane, i.e.
where the outer region pressure contours are not shown,



Fig. 9. Behavior of the interfaces and flow in the inner region for the case where solidification velocity is 500 l/s, there is no premelting (k = 0),
kp=kl ¼ 1:0, and Rp ¼ 1 lm. (a) Evolution of the gap between the particle and the front. The front shape is shown at four different times. (b) Velocity
boundary condition for the outer flow at the matching plane. (c) Inner gap pressure contour map at the steady pushing mode.
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the outer flow calculations are replaced with the inner
region lubrication flow solution.
3.2.2. Matching plane
Fig. 9 provides an illustration of the location of and

boundary conditions at the matching plane (corresponding
to the steady pushing state established in Fig. 8f). During
the front–particle interaction the location of the matching
plane changes as the inner region identified using the pro-
cedures described in Section 2.3.2 changes. Fig. 9a shows
the evolution of the geometry of the inner region, i.e. the
lubrication layer. Note that, for clarity, the gap shape is
plotted relative to the position of the solidification front
(the lower flat surface). As shown in the figure, the lateral
extent of the gap increases with time, shifting the location
of the matching plane to the right. Also, the minimum
gap thickness characterized by dmin decreases with time
until a steady-state is reached; the steady-state gap profile
is shown at time of 325 ls. At the matching plane, Eq.
(39) provides the outlet velocity profile that is used as the
boundary condition for the outer region. This velocity pro-
file (Fig. 9b) and the corresponding mass flux are obtained
to replenish the melt in the inner region that is induced by
particle motion (Eq. (51)). The pressure field calculated in
the inner region using the lubrication equation, Eq. (26),
is shown in Fig. 9c at the steady-state pushing condition
corresponding to Fig. 8c and f. At the matching plane
the outer pressure field is supplied as the boundary condi-
tion in computing the inner lubrication layer pressures
using Eq. (26). As can be seen very large pressures are
developed in the gap leading to forces that tend to push
the particle ahead of the front.
3.2.3. Inner region
The evolution of the pressure in the inner region is

shown in Fig. 10 for the time instants corresponding to
Fig. 8. At the initial stage the gap thickness is large and
the disjoining pressure forces are just beginning to make
their repulsive effect felt. The pressure profile in Fig. 10a
shows that there are hardly any negative values of pressure
in the gap, i.e. the viscous losses in the lubrication layer are
small at this time. At the right edge (i.e. the ‘‘matching
plane”) the pressure levels out to a value that is equal to
that of the outer flow. At a later time, when the gap



Fig. 10. Pressure profiles in the gap between the particle and the front as the system evolves to a final steady-state pushing mode. The profiles in (a–c) show
the pressure in the gap at three different times during the evolution of the particle–front interaction. The solidification velocity is 500 l/s, there is no
premelting (k = 0), kp=kl ¼ 1:0, and Rp ¼ 1 lm.
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between the front and the particle has narrowed, the pres-
sure obtains a large positive value on the left hand side of
the curve due to the disjoining pressure effects in the gap.
The disjoining pressures predominate over the pressure
drop in the gap due to viscous losses (the classical lubrica-
tion effect), however, leading to the particle being steadily
pushed ahead of the front. In the steady state pushing con-
dition (Fig. 10c) the disjoining pressure that pushes the par-
ticle has settled to a very large positive (i.e. upward
directed) value directly under the particle, where the gap
is narrowest, while in the region between x=Rp ¼ 0:05 and
0.2 the viscous losses in the gap suffered by the fluid coming
in from the outer region predominate.

3.2.4. Overall dynamics of particle and front

The net effect of the coupled outer-inner dynamics on
the evolution of the particle and the front is shown in
Fig. 11. Fig. 11a shows plots of particle velocity (vp) and
solidification front velocity directly below the particle (vt)
and far away from the front (pull velocity vs) against time.
As seen from the figure the particle is initially stationary
but is set in motion by the disjoining pressure forces when
approached sufficiently closely by the front and is later
pushed at a velocity equal to that of the front, i.e. a steady
pushing mode results. Fig. 11b shows the evolution with
time of the minimum gap thickness, i.e. the thickness of
the gap directly beneath the particle on the symmetry line,
plotted against time. As seen in the figure the gap thickness
decreases steadily in time and reaches a fixed value at
steady-state pushing. At steady-state pushing the gap
thickness (5 nm) is much smaller than the particle radius
(1 lm). Fig. 11c shows the forces that act on the particle
during the interaction as they vary in time. The drag and
repulsive forces are initially very small as the front is still
some distance from the particle. In time, however, the
forces rise steeply (the force / d�3) and the balance
between the repulsive disjoining pressure forces and the
opposing drag forces is very delicate. This is shown in
Fig. 11d where the total force acting on the particle is
shown. Clearly, the difference between the opposing forces
is small. It is also observed that the final steady-state push-
ing mode actually shows a slight oscillatory tendency.



Fig. 11. (a) Velocity vs. time plot and (b) dmin vs. time plot. (c) Repulsive and drag force. (d) Total force on the particle. The solidification
velocity = 500 l/s, k = 0 (no premelting effect), kp=kl ¼ 1:0, Rp ¼ 1 lm.
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4. Conclusions

A multiscale approach is developed to study the interac-
tion between an advancing solidification front and a parti-
cle embedded in the melt. The interfaces in the problem are
tracked using a level-set approach and a previously devel-
oped Cartesian grid-based sharp interface method is used
to solve the governing equations in the presence of the
moving embedded interfaces. The computational domain
is partitioned into two sub-domains, an outer region corre-
sponding to the overall particle–front system and an inner
region corresponding to the narrow gap between the front
and the particle. The dynamics of the fluid, phase boundary
and particle in this inner region has a crucial impact on the
front–particle interaction dynamics. In the inner region, the
flow and temperature fields, are solved using a lubrication
model which includes the disjoining pressure and premelted
layer effects. The solution of the lubrication model in the
inner region is coupled to the solution of the flow in the
outer region. The model computes the forces acting on
the particle and moves the particle accordingly. The
numerical method underlying the solution of the equations
in the outer region has been thoroughly validated in previ-
ous work. The fluid flow solution in the lubrication layer
and its coupling with the outer flowfield was validated
for the case of a particle approaching a stationary flat plate
for which an analytical solution exists. Results for particle–
solidification interactions using this method are provided in
the companion paper.
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